Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eco Environ Health ; 3(2): 145-153, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38638170

RESUMO

While plastic water bottles are known to potentially release various volatile organic compounds (VOCs) when exposed to light, existing knowledge in this field remains limited. In this study, we systematically examined the composition, yield, and toxicity of VOCs released from six plastic containers obtained from different continents under UV-A and solar irradiation. After light exposure, all containers released VOCs, including alkanes, alkenes, alcohols, aldehydes, carboxylic acids, aromatics, etc. The 1#, 3#, 4#, 5#, and 6# containers exhibited 35, 32, 19, 24 and 37 species of VOCs, respectively. Specifically, the 2# container released 28 and 32 series of VOCs after 1-day (short-term) and 7-day (long-term) UV-A irradiation, respectively, compared to 30 and 32 species under solar irradiation. Over half of the VOCs identified were oxidized compounds alongside various short-chain hydrocarbons. Significant differences in VOC compositions among the containers were observed, potentially originating from light-induced aging and degradation of the polyethylene terephthalate structure in the containers. Toxicological predictions unveiled distinctive toxic characteristics of VOCs from each container. For example, among the various VOCs produced by the 2# container, straight-chain alkanes like n-hexadecane (544-76-3) were identified as the most toxic compounds. After long-term irradiation, the yield of these toxic VOCs from the 2# container ranged from 0.11 ng/g to 0.79 ng/g. Considering the small mass of a single bottle, the volatilization of VOCs from an individual container would be insignificant. Even after prolonged exposure to light, the potential health risks associated with inhaling VOCs when opening and drinking bottled water appear manageable.

2.
Proc Natl Acad Sci U S A ; 121(9): e2317394121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377212

RESUMO

Effectively managing sewage sludge from Fenton reactions in an eco-friendly way is vital for Fenton technology's viability in pollution treatment. This study focuses on sewage sludge across various treatment stages, including generation, concentration, dehydration, and landfill, and employs chemical composite MoS2 to facilitate green resource utilization of all types of sludge. MoS2, with exposed Mo4+ and low-coordination sulfur, enhances iron cycling and creates an acidic microenvironment on the sludge surface. The MoS2-modified iron sludge exhibits outstanding (>95%) phenol and pollutant degradation in hydrogen peroxide and peroxymonosulfate-based Fenton systems, unlike unmodified sludge. This modified sludge maintains excellent Fenton activity in various water conditions and with multiple anions, allowing extended phenol degradation for over 14 d. Notably, the generated chemical oxygen demand (COD) in sludge modification process can be efficiently eliminated through the Fenton reaction, ensuring effluent COD compliance and enabling eco-friendly sewage sludge resource utilization.

3.
Chemosphere ; 350: 141132, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184084

RESUMO

Examining the adsorption efficiency of individual contaminants on microplastics (MPs) is resource-intensive and time-consuming. To address this challenge, combined laboratory adsorption experiments with model simulations were performed to investigate the adsorption capacities and mechanisms of MPs before and after aging. Our adsorption experiments revealed that aged polyethylene (PE) and polyvinyl chloride (PVC) MPs exhibited increased adsorption capacity for benzene, phenol, and naphthalene. Additionally, density functional theory (DFT) simulations provided insights into changes in adsorption sites, adsorption energy, and charge density on MPs. The π bond of the benzene ring emerged as a pivotal factor in the adsorption process, with van der Waals forces exerting dominant influence. For instance, the adsorption energy of benzene on pristine PE was -0.01879 eV. When oxidized groups, such as hydroxyl, carbonyl, and carboxyl, on the surface of aged PE became the adsorption sites, the adsorption energy increased to -0.06976, -0.04781, and -0.04903 eV, respectively. Regions with unoxidized functional groups also exhibited higher adsorption energies than pristine PE. These results indicated that aged PE had a stronger affinity for benzene compared to pristine PE, enhancing its adsorption. Charge density difference and energy density of states corroborated this observation, revealing larger π-bond charge accumulation areas for benzene on aged PE, suggesting stronger dipole interactions and enhanced adsorption. Similar trends were observed for phenol and naphthalene. In summary, the DFT calculations aligned with the adsorption experiment findings, confirming the effectiveness of simulation methods in predicting changes in the adsorption performance of aged MPs.


Assuntos
Plásticos , Poluentes Químicos da Água , Adsorção , Microplásticos , Benzeno , Polietileno , Naftalenos , Fenol , Fenóis
4.
Sci Total Environ ; 917: 170286, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38280606

RESUMO

Effective disinfection methods are critical for ensuring the reusability of masks, yet these methods may inadvertently introduce health concerns associated with microplastics (MPs) and volatile organic compounds (VOCs). This study investigated the impact of ultraviolet germicidal irradiation (UVGI) and sodium hypochlorite (NaClO) bleaching on mask filter layers composed of four distinct materials. Our results revealed that UVGI induced more pronounced damage compared to bleaching, leading to the significant release of both MPs and VOCs. After UVGI treatment at conventional disinfection doses, meltblown (MB) fabrics released MPs reaching 864 ± 182 µg/g (92 ± 19 particles/g). For all filter layers, the quantity of released MPs followed the order: MB > HDPE>PU ≈ NW. These MPs were identified as degraded debris from the mask filter layers. The specific VOCs generated varied depending on the material composition. Non-woven (NW) and MB fabrics, both comprised of polypropylene, predominantly produced various branched aliphatic hydrocarbons and their derivative oxides. The cotton-like fabric, composed of high-density polyethylene, primarily emitted different linear aliphatic hydrocarbons and oxygenates. In contrast, the polyurethane filter layer of reusable masks released aromatic compounds, nitrogenous compounds, and their oxidation products. The formation of VOCs was primarily attributed to bond breakage and oxidative damage to the filter structure resulting from the disinfection process. In summary, as UVGI induced higher yields of MPs and VOCs compared to bleaching, the latter would be a safer option for mask disinfection.


Assuntos
Microplásticos , Compostos Orgânicos Voláteis , Plásticos , Desinfecção/métodos , Máscaras , Polipropilenos
5.
Sci Total Environ ; 876: 162717, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36907426

RESUMO

The generation of various degradation products from microplastics (MPs) has been confirmed under ultraviolet (UV) irradiation. The gaseous products, primarily volatile organic compounds (VOCs), are usually overlooked, leading to potential unknown risks to humans and the environment. In this study, the generation of VOCs from polyethylene (PE) and polyethylene terephthalate (PET) under UV-A (365 nm) and UV-C (254 nm) irradiation in water matrixes were compared. More than 50 different VOCs were identified. For PE, UV-A-derived VOCs mainly included alkenes and alkanes. On this basis, UV-C-derived VOCs included various oxygen-containing organics, such as alcohols, aldehydes, ketones, carboxylic acid and even lactones. For PET, both UV-A and UV-C irradiation induced the generation of alkenes, alkanes, esters, phenols, etc., and the differences between these two reactions were insignificant. Toxicological prioritization prediction revealed that these VOCs have diverse toxicological profiles. The VOCs with the highest potential toxicity were dimethyl phthalate (CAS: 131-11-3) from PE and 4-acetylbenzoate (3609-53-8) from PET. Furthermore, some alkane and alcohol products also presented high potential toxicity. The quantitative results indicated that the yield of these toxic VOCs from PE could reach 102 µg g-1 under UV-C treatment. The degradation mechanisms of MPs included direct scission by UV irradiation and indirect oxidation induced by diverse activated radicals. The former mechanism was dominant in UV-A degradation, while UV-C included both mechanisms. Both mechanisms contributed to the generation of VOCs. Generally, MPs-derived VOCs can be released from water to the air after UV irradiation, posing a potential risk to ecosystems and human beings, especially for UV-C disinfection indoors in water treatments.


Assuntos
Polietileno , Compostos Orgânicos Voláteis , Humanos , Polietilenotereftalatos , Plásticos , Gases , Ecossistema , Compostos Orgânicos Voláteis/metabolismo , Microplásticos , Álcoois , Alcanos
6.
Environ Sci Pollut Res Int ; 30(18): 53807-53816, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36867338

RESUMO

Pre-treatment (oxidation) may induce potential modifications to microplastics (MPs), further affecting their behaviors and removal efficiency in drinking water treatment plants. Herein, potassium ferrate(VI) oxidation was tested as a pre-treatment for MPs with four polymer types and three sizes each. Surface oxidation occurred with morphology destruction and oxidized bond generation, which were prosperous under low acid conditions (pH 3). As pH increased, the generation and attachment of nascent state ferric oxides (FexOx) gradually became dominant, making MP-FexOx complexes. These FexOx were identified as Fe(III) compounds, including Fe2O3 and FeOOH, firmly attaching to the MP surface. Using ciprofloxacin as the targeted organic contaminant, the presence of FexOx enhanced MP sorption dramatically, e.g., the kinetic constant Kf of ciprofloxacin raised from 0.206 (6.5 µm polystyrene) to 1.062 L g-1 (polystyrene-FexOx) after oxidation at pH 6. The sinking performance of MPs was enhanced, especially for small MPs (< 10 µm), which could be attributed to the increasing density and hydrophilicity. For instance, the sinking ratio of 6.5 µm polystyrene increased by 70% after pH 6 oxidation. In general, ferrate pre-oxidation possesses multiple enhanced removals of MPs and organic contaminants through adsorption and sinking, reducing the potential risk of MPs.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Compostos Férricos/química , Microplásticos , Plásticos , Poliestirenos , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio , Ciprofloxacina
7.
J Hazard Mater ; 441: 129813, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36063714

RESUMO

Disinfection in water treatments induces microplastics (MPs) to produce various derivative products, among which the volatile organic compounds (VOCs) are still poorly understood. Ultraviolet (UV), chlorine and UV/chlorine disinfections were used to treat polypropylene (PP), polystyrene (PS) and polyvinylchloride (PVC) in this study. Modifications were observed on the MP surfaces, including melting, cracks, folds, and even forming oxygen-containing structures, resulting in the release of a diversity of VOCs. The polymer types of MPs influenced the VOCs characteristics. PP released alkanes, alkenes and aldehydes, while PVC released alkanes, alkenes and halogenated hydrocarbons. VOCs from PS were dominated by unique aromatic alkanes, alkenes and aldehydes. These derived VOCs are generated during different disinfections with distinct mechanisms. UV-C at 254 nm induced direct scission and radical oxidation on MPs. The derived VOCs were mainly bond-breaking fragments. Chlorination relied on HOCl/OCl- electrophilic reactions, resulting fewer VOCs since C-C skeleton MPs have strong resistance to electrophilic reactions. UV/chlorination promotes the generation of chlorine radicals and hydroxyl radicals, thereby causing oxidative damage. Various oxidized VOCs, such as benzaldehyde and acetophenone, were formed. The disinfection reactions can produce various VOCs from MPs, posing potential risks to the ecological environment and human beings.


Assuntos
Hidrocarbonetos Halogenados , Compostos Orgânicos Voláteis , Poluentes Químicos da Água , Purificação da Água , Acetofenonas , Alcanos , Benzaldeídos , Cloro/química , Desinfecção/métodos , Halogenação , Humanos , Microplásticos , Oxigênio , Plásticos , Polipropilenos , Poliestirenos , Cloreto de Polivinila , Raios Ultravioleta , Poluentes Químicos da Água/química , Purificação da Água/métodos
8.
Water Res ; 222: 118843, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35870394

RESUMO

Microplastics (MPs) are a worldwide environmental pollution issue. Besides the natural environmental stresses, various treatments in urban environmental management systems induce modifications on MPs, further affecting their environmental behavior. Investigating these modifications and inherent mechanisms is crucial for assessing the environmental impact and risk of MPs. In this review, up-to-date knowledge regarding the modifications of MPs in urban environmental management systems was summarized. Variations of morphology, chemical composition, hydrophilicity and specific surface area of MPs were generalized. The aging and degradation of MPs during drinking water treatment, wastewater treatment, sewage sludge treatment and solid waste treatment were investigated. A high abundance of MPs occurred in sewage sludge and aging solid waste, while digestion and composting contributed to significant decomposition and reduction of MPs. These treatments have become converters for MPs before entering the environment. Several novel technologies for MPs removal were listed; However, no appropriate methods can be put into actual application by now, except the membrane separation. The corresponding effects of degradation on the behaviors of MPs, including adsorption, sinking and contaminant leakage, were discussed. Finally, three priorities for research were proposed. This critical review provides viewpoints and references for risk evaluation of MPs after treatments in urban environmental management systems.


Assuntos
Microplásticos , Poluentes Químicos da Água , Conservação dos Recursos Naturais , Plásticos , Esgotos/química , Resíduos Sólidos , Águas Residuárias/química , Poluentes Químicos da Água/análise
9.
Sci Total Environ ; 812: 152541, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34954159

RESUMO

Chlorination and ultraviolet disinfection in drinking water treatment plants (DWTPs) may be highly destructive for microplastics (MPs). Investigating the effect of sterilization patterns on MPs behavior modifications can provide useful information to evaluate their potential risk to drinking water safety. In this study, aged polyethylene (PE), polyethylene terephthalate (PET), polystyrene (PS) and polyvinyl chloride (PVC) were applied, and five well-designed sterilization patterns with low and high doses disinfection were performed. Especially, a combining sterilization pattern including ultraviolet disinfection, low-dose chlorination and high-dose chlorination was designed to simulate the actual disinfection processes in environmental engineering systems. Different sterilization patterns contributed various chlorinated and oxidized modifications on the MPs surface, resulting in distinct effects on their sinking and adsorption performance. After combining sterilization (180 mJ cm-2 UV-C irradiation +9675 mg min L-1 chlorination), the adsorption capacities of ciprofloxacin by PET and PVC were slightly improved, and the one by PS was inhibited. Yet, PET, PVC and PS tend to sink (>95%) after this combining sterilization, implying that these MPs would be retained in DWTPs or water supply pipes. For PE, even though it maintained floating on water, its adsorption of ciprofloxacin was inhibited by combining sterilization (Kf reduced from 0.142 L g-1 to 0.069 L g-1). In general, multiple sterilization patterns can enhance the sinking and inhibit the adsorption performance of MPs, reducing their potential to become vectors of organic contaminants and risk to drinking water users.


Assuntos
Microplásticos , Poluentes Químicos da Água , Adsorção , Desinfecção , Halogenação , Plásticos , Poluentes Químicos da Água/análise
10.
J Hazard Mater ; 422: 126855, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34425434

RESUMO

Microplastics (MPs) occur in the source water of worldwide drinking water treatment plants (DWTPs). Pre-oxidation treatments become the initial stage for MPs treatment in DWTPs. Investigating the modifications of MPs after pre-oxidations is important to understand their fate in DWTPs. In this study, potassium permanganate oxidation (PPO) was applied to treat four high abundant MPs in DWTPs, including polyethylene (PE), polyethylene terephthalate (PET), polyvinylchloride (PVC) and polystyrene (PS). Influences of polymer types, sizes and pH were considered. After 10 mg L-1 PPO, only slight corrosions were observed on all MPs. Whereas, the appearances of O-Mn spectrum and the observation of nano-scale particles indicated the generation of nascent state Mn-oxides (MnO2) on MPs surface. This adhesion of MnO2 contributed to increasing density and hydrophilicity. As a result, the sinking performance of MPs was enhanced, e.g. the sinking ratio of 6.5 µm MPs increased 30% (PET), 20% (PVC) and 30% (PS) compared with pristine ones upon pH 7 PPO. These results implied that the practical PPO can enhance the sinking behavior of MPs. Of note, PE seems to be persistent and requires special concern.


Assuntos
Microplásticos , Poluentes Químicos da Água , Terapia Comportamental , Compostos de Manganês , Óxidos , Plásticos , Permanganato de Potássio , Poluentes Químicos da Água/análise
11.
Environ Sci Pollut Res Int ; 28(48): 68560-68571, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34275082

RESUMO

The development of water-stable metal-organic frameworks is a critical issue for their photocatalysis applications in water treatment. A phenyl-ethyl side chain with low surface energy was grafted into NH2-MIL-101(Fe) through a post-synthetic modification (PSM) method. As a result, a novel MIL-101(Fe)-1-(4-(ethyl)phenyl)urea (named MIL-101(Fe)-EPU) was synthesized. Basic morphology, crystal structure, and chemical bond features of MIL-101(Fe)-EPU were retained after PSM. Nitrogen X-ray photoelectron spectroscopy analysis confirmed the successful introduction of the phenyl-ethyl side chain, and this transformation increased its hydrophobicity and water stability. Contact angles of MIL-101(Fe)-EPU to water raised from 59.6 to 140.4°. And its structure maintained intact after 72 h water exposure, indicating higher stability than parent NH2-MIL-101(Fe). In the photocatalysis reaction with visible light and oxidant donor (H2O2), MIL-101(Fe)-EPU demonstrated a degradation efficiency of tetrabromobisphenol A with a reaction rate at 0.0313 min-1. The predominant reaction mechanism was OH·oxidation. The acid condition was beneficial for this photocatalysis reaction and high stability was observed. Besides, photocatalysis efficiency, crystal structure, and chemical structures were all retained in different actual water mediums, suggesting high adaptability of MIL-101(Fe)-EPU. In general, hydrophobic group grafting using a PSM method endows MIL-101(Fe)-EPU the potentiality as photocatalyst for organic contaminant elimination from water.


Assuntos
Estruturas Metalorgânicas , Purificação da Água , Peróxido de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas
12.
Sci Total Environ ; 791: 148107, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34118668

RESUMO

Low yields of H2O2 and a narrow range of appropriate pH values have been two major drawbacks for electro-Fenton (EF) process. Herein, metal-free electrochemical advanced oxidation processes (EAOPs) were developed with nitrogen and sulfur co-doped electrochemically exfoliated graphene (N, S-EEGr) electrocatalysts, which was confirmed as an outstanding bifunctional catalyst for synchronous generation and activation of H2O2 via (2 + 1) e- consecutive reduction reactions. Specifically, two elements (N, S) in metal-free N, S-EEGr-CF cathode synergize to promote the formation of H2O2 followed by its activation. With N, S-EEGr-CF cathode, phenol of initial 50 mg L-1 could be effectively removed within pH 3-11 and 6.25 mA cm-2, and 100% removal efficiency could be achieved within 15-min even at neutral pH. The pseudo-first-order rate constant for phenol removal in metal-free EAOPs with N,S-EEGr-CF at neutral pH was 10 times higher than that with EF process. Detection of active species, coupled with decay kinetics with specific trapping agents, confirmed that OH was the dominant oxidizing species promoting removal efficiencies of organics (phenol, antibiotics and dyes) at pH 3 and pH 7. In the actual wastewater treatment, the synergistic effect of bifunctional catalyst would also be used for improving the degradation efficiency of organics. Thus, the metal-free EAOPs with N,S-EEGr-CF cathode may serve as an alternative in wastewater treatment with a broadened range of solution pH values and avoiding Fe2+ (catalyst) addition.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Eletrodos , Peróxido de Hidrogênio , Radical Hidroxila , Oxirredução , Poluentes Químicos da Água/análise
13.
Water Res ; 186: 116360, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32896740

RESUMO

Wastewater treatment plants (WWTPs) are considerable microplastics (MPs) contributors to environmental waters. Knowledge about the MPs degradation process under ultraviolet irradiation was crucial to understanding the fate of MPs during and after water disinfection. In this study, surface alternations of polystyrene (PS), polyethylene (PE), polyvinylchloride (PVC) and polyethylene terephthalate (PET) under 254 nm (UV-C) and 185/254 nm (vacuum ultraviolet, VUV) irradiation were estimated. One-way treatment of MPs by UV or VUV with the recommended dose for WWTPs (USEPA, ~180 mJ cm-2) had little effect. In contrast, excessive exposure under twenty-times doses irradiation (3600 mJ cm-2) resulted in significant alternations on surface morphology, chemical feature and hydrophobicity. Noticeably morphology alterations, including cracks, wrinkles and protuberances, were observed for PS, PVC and PET, while PE was relatively resistant. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy revealed that UV irradiation induced cleavage of chemical bonds. Besides, simultaneous radical oxidation was predominant during VUV treatment, which contributed to the increasing generation of oxygen bonds, such as CO and CO, on all MPs surfaces. Drastic decreases of contact angle (> 20°) were observed for PS, PVC and PET even after 180 mJ cm-2 UV irradiation, indicating the UV disinfection in WWTPs can easily change their surface hydrophobicity. All these alternations weakened the adsorption capacity of non-polar benzene and polar ciprofloxacin on MPs. Generally, regular dose UV and VUV irradiation in water treatment disinfection can only induce slight effects on MPs surface characteristics and adsorption performance, while extreme dose irradiation can induce a potential reducing risk of organic contaminants migration along with MPs.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Microplásticos , Plásticos , Raios Ultravioleta , Vácuo
14.
Ecotoxicol Environ Saf ; 206: 111140, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32858325

RESUMO

Although the toxicity of triclocarban at molecular level has been investigated, the metabolic networks involved in regulating the stress processes are not clear. Whether the cells would maintain specific phenotypic characteristics after triclocarban stress is also needed to be clarified. In this study, Escherichia coli was selected as a model to elucidate the cellular metabolism response associated with triclocarban stress and the recovery metabolic network of the triclocarban-treated cells using the proteomics and metabolomics approaches. Results showed that triclocarban caused systematic metabolic remodeling. The adaptive pathways, glyoxylate shunt and acetate-switch were activated. These arrangements allowed cells to use more acetyl-CoA and to reduce carbon atom loss. The upregulation of NH3-dependent NAD+ synthetase complemented the NAD+ consumption by catabolism, maintaining the redox balance. The synthesis of 1-deoxy-D-xylulose-5-phosphate was suppressed, which would affect the accumulation of end products of its downstream pathway of isoprenoid synthesis. After recovery culture for 12 h, the state of cells returned to stability and the main impacts on metabolic network triggered by triclocarban have disappeared. However, drug resistance caused by long-term exposure to environmentally relevant concentration of triclocarban is still worthy of attention. The present study revealed the molecular events under triclocarban stress and clarified how triclocarban influence the metabolic networks.


Assuntos
Anti-Infecciosos Locais/toxicidade , Carbanilidas/toxicidade , Escherichia coli/fisiologia , Redes e Vias Metabólicas , Acetatos/metabolismo , Carbono/metabolismo , Glioxilatos , Metabolômica , Proteômica
15.
Sci Total Environ ; 699: 134342, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31678885

RESUMO

Heterogeneous photodegradation is limited at high catalyst concentrations because of the scattering and reflection of the particulate catalysts. To further improve the efficiency of photodegradation and the use of space in photoreactors at high catalyst concentrations, Ga3+ was doped into Zn2SiO4 to introduce positively charged traps to capture photo-generated electrons and, thus, achieve long lifetime charge separation. In this strategy, Zn2SiO4:Ga3+ was obtained as a two-in-one (persistent luminescence and catalysis) persistent photocatalyst for the efficient photodegradation of a household insecticide, permethrin. Zn2SiO4:Ga3+ possesses an UV afterglow property. Zn2SiO4:Ga3+ can store UV irradiation energy as long lifetime separated electron/hole pairs at the solution surface and then deliver this energy deep into the bulk of the solution, thus taking full advantage of the photoreactor. High catalyst concentrations are preferred for improving the persistent photodegradation efficiency. The UV persistent photocatalytic strategy and the persistent Zn2SiO4:Ga3+ catalyst are significant for designing fast photocatalytic reactors with high catalyst concentrations.

16.
Sci Total Environ ; 708: 135199, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31780180

RESUMO

The effects of hexabromocyclododecane (HBCD) on the relationship between physiological responses and metabolic networks remains unclear. To this end, cellular growth, apoptosis, reactive oxygen species, exometabolites and the proteome of Escherichia coli were investigated following exposure to 0.1 and 1 µM HBCD. The results showed that although there were no significant changes in the pH value, apoptosis and reactive oxygen species under HBCD stress, cell growth was inhibited. The metabolic network formed by glycolysis, oxidative phosphorylation, amino acids biosynthesis, membrane proteins biosynthesis, ABC transporters, glycogen storage, cell recognition, compound transport and nucleotide excision repair was disrupted. Cell chemotaxis and DNA damage repair were the effective approaches to alleviate HBCD stress. This work improves our understanding of HBCD toxicity and provides insight into the toxicological mechanism of HBCD at the molecular and network levels.


Assuntos
Escherichia coli , Apoptose , Retardadores de Chama , Hidrocarbonetos Bromados , Espécies Reativas de Oxigênio
17.
Water Sci Technol ; 80(4): 773-783, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31661456

RESUMO

Benzotriazoles (BTs) attract increasing concerns because of abundant presence in environmental water bodies. In this study, degradation of 1H-benzotriazole (1H-BT) was performed by a customized vacuum ultraviolet (VUV) device emitting 185 + 254 nm (VUV/UV-C) irradiation. Degradation of 1H-BT presented an apparent rate constant reached 8.17 × 10-4 s-1. Degradation mechanisms included 185 + 254 nm photodegradation and radical reaction. The later one may be the predominant one, which presented a k·OH-1H-BT at (7.3 ± 0.8) × 109 M-1 s-1. Effects of anions revealed that VUV interception and radical trapping were the dominant restraining factors. Degradation of 1H-BT can be attributed to VUV induced radical-based oxidation. Radical-induced addition, substitution and fracture generated abundant hydroxylated and open-loop products during 10-45 min. Identification using reactive oxygen species and apoptosis in Escherichia coli was conducted. Variations of these two indicators revealed that the incomplete degradation products presented higher toxicities than 1H-BT, and a further mineralization reduced their toxicities. In the pure water solution with little impurities, VUV can induce efficient degradation of 1H-BT, suggesting its potential for eliminating and detoxifying MPs.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Estudos Prospectivos , Triazóis , Raios Ultravioleta , Vácuo
18.
Environ Sci Pollut Res Int ; 26(24): 24720-24732, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31236869

RESUMO

Metal-organic frameworks (MOFs) are attractive novel classes of porous materials with diverse potentiality and easily tailored structures. It is desirable to evaluate the performance of MOFs as photocatalysts for organic contaminant removal in aqueous matrixes. In this study, iron-based MIL-101(Fe) was synthesized and a photo-Fenton reaction system (multiple wavelength light + MIL-101(Fe) + H2O2) was developed for elimination of tris(2-chloroethyl) phosphate (TCEP). Degradation pattern of TCEP followed an S-shape curve, which included a slow induction period and a rapid radical oxidation process. Transport of reactants into MIL-101(Fe) and the activation of electron transport within Fe-O clusters of MIL-101(Fe) may be the dominant mechanisms in the induction period, while a pseudo-first-order kinetics was observed in the hydroxyl radical oxidation process. Removal efficiencies in these two stages highly depended on the reaction conditions. Irradiation at 420 nm and acid condition were conductive, while high temperature and high [H2O2]:[MIL-101(Fe)] mass ratio accelerated the reaction. Before complete mineralization, eleven degradation products were generated, and the dominant degradation pathways included cleavage, hydroxylation, carbonylation, and carboxylation. Under acid condition (pH = 3), only 1% mass loss was observed after 60-min reaction, but the iron leakage was aggravated when pH increased. Furthermore, this MOF-photo-Fenton system demonstrated a robust performance on TCEP degradation in actual wastewater matrixes under acid condition. Generally, the MOF-photo-Fenton system is a potential technology for elimination of organic pollutants in aqueous solution.


Assuntos
Estruturas Metalorgânicas/química , Organofosfatos/química , Peróxido de Hidrogênio/química , Radical Hidroxila/química , Ferro/química , Cinética , Oxirredução , Águas Residuárias , Água
19.
Ecotoxicol Environ Saf ; 160: 328-341, 2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-29857237

RESUMO

Erythromycin is one of the most widely used macrolide antibiotics. To present a system-level understanding of erythromycin stress and degradation, proteome, phospholipids and membrane potentials were investigated after the erythromycin degradation. Bacillus thuringiensis could effectively remove 77% and degrade 53% of 1 µM erythromycin within 24 h. The 36 up-regulated and 22 down-regulated proteins were mainly involved in spore germination, chaperone and nucleic acid binding. Up-regulated ribose-phosphate pyrophosphokinase and ribosomal proteins confirmed that the synthesis of protein, DNA and RNA were enhanced after the erythromycin degradation. The reaction network of glycolysis/gluconeogenesis was activated, whereas, the activity of spore germination was decreased. The increased synthesis of phospholipids, especially, palmitoleic acid and oleic acid, altered the membrane permeability for erythromycin transport. Ribose-phosphate pyrophosphokinase and palmitoleic acid could be biomarkers to reflect erythromycin exposure. Lipids, disease, pyruvate metabolism and citrate cycle in human cells could be the target pathways influenced by erythromycin. The findings presented novel insights to the interaction among erythromycin stress, protein interaction and metabolism network, and provided a useful protocol for investigating cellular metabolism responses under pollutant stress.


Assuntos
Antibacterianos/toxicidade , Bacillus thuringiensis/efeitos dos fármacos , Eritromicina/toxicidade , Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Glicólise , Humanos , Fosfolipídeos/metabolismo , Proteoma/metabolismo
20.
Sci Total Environ ; 640-641: 714-725, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29879660

RESUMO

Bisphenol A (BPA) is a worldwide, widespread pollutant with estrogen mimicking and hormone-like properties. To date, some target biomolecules associated with BPA toxicity have been confirmed. The limited information has not clarified the related metabolism at the pathway and network levels. To this end, metabolic and proteomic approaches were performed to reveal the synthesis of phospholipids and proteins and the metabolic network during the BPA degradation process. The results showed that the degradation efficiency of 1 µM of BPA by 1 g L-1 of Bacillus thuringiensis was up to 85% after 24 h. During this process, BPA significantly changed the membrane permeability; altered sporulation, amino acid and protein expression, and carbon, purine, pyrimidine and fatty acid metabolism; enhanced C14:0, C16:1ω7, C18:2ω6, C18:1ω9t and C18:0 synthesis; and increased the trans/cis ratio of C18:1ω9t/C18:1ω9c. It also depressed the spore DNA stability of B. thuringiensis. Among the 14 upregulated and 7 down-regulated proteins, SasP-1 could be a biomarker to reflect BPA-triggered spore DNA impairment. TpiA, RpoA, GlnA and InfA could be phosphorylated at the active sites of serine and tyrosine. The findings presented novel insights into the interaction among BPA stress, BPA degradation, phospholipid synthesis and protein expression at the network and phylogenetic levels.


Assuntos
Bacillus thuringiensis/metabolismo , Compostos Benzidrílicos/metabolismo , Fenóis/metabolismo , Filogenia , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...